19^2=100+x^2

Simple and best practice solution for 19^2=100+x^2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 19^2=100+x^2 equation:



19^2=100+x^2
We move all terms to the left:
19^2-(100+x^2)=0
We add all the numbers together, and all the variables
-(100+x^2)+361=0
We get rid of parentheses
-x^2-100+361=0
We add all the numbers together, and all the variables
-1x^2+261=0
a = -1; b = 0; c = +261;
Δ = b2-4ac
Δ = 02-4·(-1)·261
Δ = 1044
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{1044}=\sqrt{36*29}=\sqrt{36}*\sqrt{29}=6\sqrt{29}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-6\sqrt{29}}{2*-1}=\frac{0-6\sqrt{29}}{-2} =-\frac{6\sqrt{29}}{-2} =-\frac{3\sqrt{29}}{-1} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+6\sqrt{29}}{2*-1}=\frac{0+6\sqrt{29}}{-2} =\frac{6\sqrt{29}}{-2} =\frac{3\sqrt{29}}{-1} $

See similar equations:

| 15y+16=20 | | 6x=378 | | 2x^2(x+2)-4=8 | | 5x/9+20/5=22/6 | | 5/9x+20/5=22/6 | | 15=7e+1 | | 4y-7+4y-7+90=180 | | f(10)=34 | | 4x+6+2x=2+3x | | 6m-15=-27 | | -5(x+5)+29=10-6x | | 8(1+3n)+3n=89 | | 3x^2−36x=−42 | | 5y/6+2=30 | | 17n-20n=81 | | 20n-17n=81 | | x+2(1.5x-9)=16 | | -1.5x-3.1=5.5 | | 7x-2=10x-3 | | 90=6×s | | X/4=x/2-2 | | 4(2x+3)=16x+13-8x+9 | | 5(1-2n)+15=40 | | 4x^2+x^2=60 | | v=1/2723v-6=12 | | 50n-6=44 | | 3+8x+8=98 | | 1=8+b | | F(n)={n/23n+1 | | 3x-(-3x)=12 | | 6s+98=180 | | 2x+26+5x=180 |

Equations solver categories